Heat-stress-induced changes in central venous pressure do not explain interindividual differences in orthostatic tolerance during heat stress.

نویسندگان

  • R Matthew Brothers
  • David M Keller
  • Jonathan E Wingo
  • Matthew S Ganio
  • Craig G Crandall
چکیده

The extent to which heat stress compromises blood pressure control is variable among individuals, with some individuals becoming very intolerant to a hypotensive challenge, such as lower body negative pressure (LBNP) while heat stressed, while others are relatively tolerant. Heat stress itself reduces indexes of ventricular filling pressure, including central venous pressure, which may be reflective of reductions in tolerance in this thermal condition. This study tested the hypothesis that the magnitude of the reduction in central venous pressure in response to heat stress alone is related to the subsequent decrement in LBNP tolerance. In 19 subjects, central hypovolemia was imposed via LBNP to presyncope in both normothermic and heat-stress conditions. Tolerance to LBNP was quantified using a cumulative stress index (CSI), and the difference between normothermic CSI and heat-stress CSI was calculated for each individual. The eight individuals with the greatest CSI difference between normothermic and heat-stress tolerances (LargeDif), and the eight individuals with the smallest CSI difference (SmallDif), were grouped together. By design, the difference in CSI between thermal conditions was greater in the LargeDif group (969 vs. 382 mmHg × min; P < 0.001). Despite this profound difference in the effect of heat stress in decreasing LBNP tolerance between groups, coupled with no difference in the rise in core body temperatures to the heat stress (LargeDif, 1.4 ± 0.1°C vs. SmallDif, 1.4 ± 0.1°C; interaction P = 0.89), the reduction in central venous pressure during heat stress alone was similar between groups (LargeDif: 5.7 ± 1.9 mmHg vs. SmallDif: 5.2 ± 2.0 mmHg; interaction P = 0.85). Contrary to the proposed hypothesis, differences in blood pressure control during LBNP are not related to differences in the magnitude of the heat-stress-induced reductions in central venous pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variability in orthostatic tolerance during heat stress: cerebrovascular reactivity to arterial carbon dioxide.

INTRODUCTION A high degree of interindividual variability exists in the magnitude of heat stress (HS)-induced reductions in orthostatic tolerance relative to normothermia (NT). This variability may be associated with HS-mediated reductions in cerebral perfusion (indexed as middle cerebral artery blood velocity; MCAV(mean)) and altered cerebrovascular regulation. METHODS We tested the hypothes...

متن کامل

Heat stress modifies human baroreflex function independently of heat-induced hypovolemia.

Since human thermoregulatory heat loss responses, cutaneous vasodilation and sweating, cause hypovolemia, they should resultantly stimulate human baroreflexes. However, it is possible that the thermoregulatory system directly interacts with the baroreflex system through central neural connections independently of the heat-induced hypovolemia. We hypothesized that heat stress modifies the barore...

متن کامل

Menstrual cycle and sex affect hemodynamic responses to combined orthostatic and heat stress.

Women have decreased orthostatic tolerance compared with men, and anecdotal evidence suggests women are more susceptible to orthostatic intolerance in warm environments. Because estrogen and progesterone affect numerous physiological variables that may alter orthostatic tolerance, the purpose of our study was to compare orthostatic tolerance across the menstrual cycle phases in women during com...

متن کامل

Plasma hyperosmolality improves tolerance to combined heat stress and central hypovolemia in humans.

Heat stress profoundly impairs tolerance to central hypovolemia in humans via a number of mechanisms including heat-induced hypovolemia. However, heat stress also elevates plasma osmolality; the effects of which on tolerance to central hypovolemia remain unknown. This study examined the effect of plasma hyperosmolality on tolerance to central hypovolemia in heat-stressed humans. With the use of...

متن کامل

Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans.

Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 110 5  شماره 

صفحات  -

تاریخ انتشار 2011